Defending vegetables in organic production from BMSB: Attraction and retention using trap crops

Rob Morrison, Clarissa Matthews, and Tracy Leskey
${ }^{1}$ USDA-ARS Appalachian Fruit Research Station, Kearneysville, WV ${ }^{2}$ Shepherd University, Shepherdstown, WV

BMSB in Organic Production

- Organic insecticides are of limited value (lee etl., 2014)
- Few options for management of stink bugs in organic production

Trap Cropping in Organic Peppers

-Trap cropping with some success for other stink bugs (Mizell et al. 2008)
-Sunflower and sorghum very attractive to BMSB ${ }_{\text {Niesesen }}$ unpublished data)
-Potentially good trap crop

Aims of Trap Crop Project

1) Use harmonic radar to:
evaluate retention time of trap vs. cash crop elucidate distance moved from release point
2) Evaluate SB damage in plots with/without a trap crop

Note About Harmonic Radar

- Marine radar device
- Reflected signals from tag are received and translated into sound

Note About Harmonic Radar

- Marine radar device
- Reflected signals from tag are received and translated into sound

Note About Harmonic Radar

- Marine radar device
- Reflected signals from tag are received and translated into sound

Note About Harmonic Radar

- Marine radar device
- Reflected signals from tag are received and translated into sound

Note About Harmonic Radar

- Marine radar device
- Reflected signals from tag are received and translated into sound

Trap Crop Experimental Design

Trap Crop Experimental Design

1 doubly tagged BMSB adult released

Trap Crop Experimental Design

1 doubly tagged BMSB adult released

Post-Release Sampling

Trap Crop Experimental Design

Flowering
$\times 12$ reps per time period

Trap Crop Experimental Design

Fruiting
$\times 16$ reps per time period

Trap Crop Experimental Design

Post-harvest

$\times 12$ reps per time period

Trap Crop Damage

Trap Crop Damage

Rating Class 0 Undamaged

Rating Class 1 Minor Injury

Rating Class 2 Major Injury

Mature fruit harvested weekly: 28 Jul-14 Sept 100 plants/plot

Trap Crop Statistics

-2 ANOVAs
-Retention time $=\mu+$ Release Crop + Period $+\varepsilon$
\bullet Distance Moved $=\mu+$ Release Crop + Period $+\varepsilon$

Trap Crop Statistics

-Tukey's HSD for pairwise comparisons

- Chi-square test for expected locations based on surface area
-T-tests for damage measures

Retention Time

ANOVA
Release Location
$\mathrm{F}_{1,74}=11.4$
$\mathrm{P}<0.0012$

Tagged Individual Released In

Retention Time

ANOVA
Release Location
$\mathrm{F}_{1,74}=11.4$
$\mathrm{P}<0.0012$
Sampling Period
$\mathrm{F}_{2,74}=18.2$
$\mathrm{P}<0.0001$
Tukey's HSD

- Cash
- Trap

Phenological Stage

Retention Time

Phenological Stage

ANOVA
Release Location
$\mathrm{F}_{1,74}=11.4$
$\mathrm{P}<0.0012$
Sampling Period
$\mathrm{F}_{2,74}=18.2$
$\mathrm{P}<0.0001$
Tukey's HSD

- Cash
- Trap

Retention Time

Distance Moved

ANOVA
Release Location
$\mathrm{F}_{1,314}=205$
$\mathrm{P}<0.0001$
Tukey's HSD

Crop Released In

Distance Moved

Phenological Stage

Distance Moved

ANOVA
Release Location
$\mathrm{F}_{1,314}=205$
$\mathrm{P}<0.0001$
Sampling Period
$\mathrm{F}_{2,314}=162$
$\mathrm{P}<0.0001$
Tukey's HSD

Phenological Stage

Distance Moved

Phenological Stage

End Location of Tagged BMSB

- Sorghum
- Sunflowers End
- Peppers

■ Outside

Released in
Flowering Period

End Location of Tagged BMSB

- Sorghum
- Sunflowers End
- Peppers

Location
■ Outside

End Location of Tagged BMSB

Expected Location Based on Surface Area of Each Habitat

Surface area
71.9\% - cash
28.1\% - trap
χ^{2}-test
$\chi^{2}=876.8$
$\mathrm{P}<0.0001$

- Actual
\square Expected

End Location

Stink Bug Damage

From Clarissa Mathews, Shepherd University

Summary

-Retention time is greater for the trap crop
-Distance moved is less for the trap crop

- Switching occurs from pepper to the trap crop but not vice versa
-Attractiveness of the crops is modulated by phenology
-Damage is less in plots with trap crops than without

Conclusions \& Future Directions

- Trap cropping may be a good alternative cultural control
- May need to switch out sorghum or plant earlier
- Investigate trap cropping in combo with killing agent

Acknowledgements

- USDA-ARS, USDA NIFA SCRI \# 2011-51181-30937, - USDA-APHIS, OREI \#2012-51300-20097

Thank you for your attention!

In the field one morning...

