

Defending vegetables in organic production from BMSB: Attraction and retention using trap crops

Rob Morrison, Clarissa Matthews, and Tracy Leskey

¹USDA-ARS Appalachian Fruit Research Station, Kearneysville, WV ²Shepherd University, Shepherdstown, WV

BMSB in Organic Production

•Organic insecticides are of limited value (Lee et al., 2014)

•Few options for management of stink bugs in organic production

Trap Cropping in Organic Peppers

•Trap cropping with some success for other stink bugs (Mizell et al. 2008)

•Sunflower and sorghum very attractive to BMSB (Nielsen unpublished data)

Potentially good trap crop

Aims of Trap Crop Project

1) Use harmonic radar to:

evaluate retention time of trap vs. cash crop elucidate distance moved from release point

2) Evaluate SB damage in plots with/without a trap crop

- Marine radar device
- Reflected signals from tag are received and translated into sound

- Marine radar device
- Reflected signals from tag are received and translated into sound

- Marine radar device
- Reflected signals from tag are received and translated into sound

- Marine radar device
- Reflected signals from tag are received and translated into sound

- Marine radar device
- Reflected signals from tag are received and translated into sound

1 doubly tagged BMSB adult released

Post-Release Sampling $1 \text{ hr } \longrightarrow 3 \text{ hrs} \longrightarrow 6 \text{ hrs} \longrightarrow 24 \text{ hrs}$

x 4 blocks

1 doubly tagged BMSB adult released

Post-Release Sampling 1 hr \longrightarrow 3 hrs \longrightarrow 6 hrs \longrightarrow 24 hrs

Flowering x 12 reps per time period

Fruiting x 16 reps per time period

Post-harvest x 12 reps per time period

Trap Crop Damage

VS.

With Trap Crop

Without Trap Crop

Mature fruit harvested weekly: 28 Jul – 14 Sept 100 plants/plot

Trap Crop Damage

Rating Class 0 – Undamaged

Rating Class 1 – Minor Injury

Rating Class 2 – Major Injury

Mature fruit harvested weekly: 28 Jul – 14 Sept 100 plants/plot

Trap Crop Statistics

- •2 ANOVAs
 - •Retention time = μ + Release Crop + Period + ϵ
 - •Distance Moved = μ + Release Crop + Period + ϵ

Trap Crop Statistics

- •Tukey's HSD for pairwise comparisons
- •Chi-square test for expected locations based on surface area
- •T-tests for damage measures

ANOVA Release Location $F_{1,74} = 11.4$ P < 0.0012

ANOVA

Crop Released In

Phenological Stage

Phenological Stage

Phenological Stage

End Location of Tagged BMSB

End Location of Tagged BMSB

End Location of Tagged BMSB

Expected Location Based on Surface Area of Each Habitat

Stink Bug Damage

From Clarissa Mathews, Shepherd University

Summary

- •Retention time is greater for the trap crop
- •Distance moved is less for the trap crop
- •Switching occurs from pepper to the trap crop but not vice versa
- Attractiveness of the crops is modulated by phenology
- •Damage is less in plots with trap crops than without

Conclusions & Future Directions

- •Trap cropping may be a good alternative cultural control
- •May need to switch out sorghum or plant earlier
- Investigate trap cropping in combo with killing agent

Acknowledgements

- USDA-ARS, USDA NIFA SCRI # 2011-51181-30937,
- USDA-APHIS, OREI #2012-51300-20097

To learn more about this project and find links to BMSB information, visit

United States Department of Agriculture National Institute of Food and Agriculture

Thank you for your attention!

In the field one morning...