Progress In Pheromone-Based Trapping

Tracy Leskey, Ashot Khrimian, Aijun Zhang, Don Weber, Doug Pfeiffer, Cesar Rodriguez-Saona, George Hamilton, Dean Polk, Chris Bergh, Paula Shrewsbury, Galen Dively, Greg Krawczyk, Jay Brunner, Peter Shearer, Peter Jentsch, and Art Agnello

- Visual Stimulus
 - Large black pyramid

Olfactory Stimuli

- BMSB aggregation pheromone
- Synergist
- <u>Capture Mechanism</u>
 - Tapered pyramid to inverted funnel jar with DDVP toxicant strip

Deployment Strategy

 Traps placed in peripheral row of orchard

Broad Validation in Multi-State Trial

- Is BMSB attracted to #10 in the early season?
- Is BMSB attracted to #10 season-long?
- How attractive is this stimulus relative to MDT and unbaited traps?
- WV, MD, VA, PA, NJ, NY, DE, NC, OR, WA, and OH

General Protocol

- Black pyramid traps
- Three odor treatments
 - 1) #10
 - 2) MDT
 - 3) unbaited control
- Traps are deployed between wild host habitat and agricultural production area.
- Traps were deployed in mid-April and left in place season-long.

Reliable Season-Long Monitoring in Commercial Orchards

- BMSB reliably captured during early season.
- Low numbers during much of mid-season.
- MDT very attractive and #10 attractive in the late season.

Early Season Mid-April – Mid June

Mid-Season Mid June - Mid August

Late Season Mid-August – Early October

Dose Response Trial June 14-July 19, 2012

11:1 Ratio (Baited: Unbaited) for 10 mg lure ~25:1 Ratio (Baited: Unbaited) for 100 mg lure

Lure Affordability: Encouraging Results from Purity Trial

Effect of Synergist

Control	1 x	1 x
---------	-----	-----

#10	8–11 x	2-4 x

#10 + Synergist ~5-120 x ~5-100 x

Season-Long Synergist Results Mid-May – Mid November

Mid-Season Mid June - Mid August

Late Season Mid-August – Mid October

Post-Harvest Mid-October – Mid-November

Broad Validation in Multi-State Trial in 2013

- Document season-long patterns of activity.
- Compare commercially available synergists in combination with #10
- ME, NH, CT, MA, PA, NJ, VA, WV, MD, DE, NC, FL, AL, MI, OH, IA, MO, UT, CA, OR, WA

Season-Long Captures in Apple in 2013 April 3-June 3 2013

Coordinated Trial Results To Date

Total Captures	#10	#10 + Synergist	#10 + Synergist	Control
Adults	96	430	411	13

Results from WV, MD, PA, VA, NJ, OR, DE, NY and NC

Current Studies Commercial Orchard Threshold Studies

Preliminary Peach Results

- Significant linear relationship between exterior trap captures and temperature (P=0.002; r²=0.89) but not interior trap captures and temperature (P=0.204; r²=0.44).
- No significant correlation between exterior and interior trap captures.

Preliminary Trends in Trap Captures and Border Landscapes in the Early Season in Peach

- Linear relationship between exterior trap captures and temperature at P = 0.0955; r²=0.46 and interior trap captures and temperature at P = 0.0594; r²=0.54
- Significant relationship interior trap and exterior trap captures (P=0.002; r²=0.89)

Preliminary Trends in Trap Captures and Border Landscapes in the Early Season in Apple

On-Station Threshold Studies in Apple

Dispersal from Overwintering Sites

 Under what abiotic conditions (temperature), do BMSB become active?

• What does the pattern of emergence from overwintering sites look like?

• Do they respond to pheromone traps immediately after exiting overwintering sites?

Collect Overwintering Bugs

TOP QUALITY FREEH ORGANIC BANANAS

Marked Over 4,000 Bugs For Release

Provisioned Each Overwintering Shelter With 300 Marked Bugs

Deployed Paired Overwintering Shelters and Baited Traps in Wooded Locations in Late February

Emergence Results to Date

Emergence and Wild Bug Captures

Emergence and Wild Bug Captures

• Similar patterns of emergence at all sites.

• Similar pattern of wild bug activity in traps and emergence.

• No marked bugs. Obligatory dispersal flight?

Trap Type Study

 Are capture patterns similar among ground-mounted standard 4-ft
pyramid trap and smaller pyramid style traps?

Season-Long Trial in Commercial Apple Orchards

Preliminary Results

Preliminary Results

Conclusions

- Aggregation pheromone of BMSB has been identified.
- Synergist has been identified.
- These stimuli provide reliable detection of BMSB activity.
- Applied questions can now be addressed.

Acknowledgements

To learn more about this project and find links to BMSB information, visit

USDA-ARS, USDA NIFA SCRI # 2011-51181-30937, VDACS, and USDA-APHIS

