

Attract-and-Kill of BMSB: A SARE Project Summary

Rob Morrison¹, A. Nielsen², J.C. Bergh³, G. Krawcyzk⁴, B. Blaauw⁵, B. Short¹, and T.C. Leskey¹

- ¹ Appalachian Fruit Research Station, USDA-ARS, Kearneysville, WV I ICI
- ² Department of Entomology, Rutgers University, Bridgeton, NJ
- ³ AREC, Virginia Tech, Winchester, VA
- ⁴ Department of Entomology, Penn State, Biglerville, PA
- ⁵ Department of Entomology, University of Georgia, Athens, GA

Conventional Management for BMSB

• ARM or full block sprays of broad spectrum materials (Rice et al. 2014; Lee 2015)

Conventional Management for BMSB

- ARM or full block sprays of broad spectrum materials (Rice et al. 2014; Lee 2015)
- Not sustainable in the long term

Recent Advances with Pheromones

 BMSB aggregation pheromone identified as two stereoisomers of 10,11-epoxy-1-bisabolen-3-ol (Khrimian et al. 2014)

 Attraction is synergized when combined with methyl decatrienoate (Weber et al. 2014)

Active components of 10,11-epoxy-1-bisabolen-3-ol

Methyl decatrienoate (MDT)

Attract-and-Kill as Alternative Strategy

Attract-and-Kill as Alternative Strategy

Preliminary Work with AK

- Over 6 days, killed ~28,000 adults and ~5,000 nymphs at trees with high dose of pheromone (Morrison et al. 2016)
- High retention capacity of AK trees and low spillover into rest of orchard (Morrison et al. 2016)

•On 10 farms in 2015 & 2016

- •On 10 farms in 2015 & 2016
- •Two treatments: **AK** vs. **grower std.**

- •On 10 farms in 2015
- •Two treatments: **AK** vs. **grower std.**

- •On 10 farms in 2015
- •Two treatments: AK vs. grower std.
- Safeguard with spray triggered by monitoring trap

Damage Incidence per Tree

10 fruit per tree

Counts of Killed BMSB on Tarps

At 4 sites across 4 states

23 AK trees 17 Control Trees

BMSB adults & nymphs

Split Season Into Three Periods

Early Before Jun 15th

Mid Jun 15th-Aug 15th

Harvest After Aug 15th

2015 Results: Low population year

Mean Severity (± SE) of Fruit Damage

Results: Fruit Damage Severity

- Attract-and-Kill
- Grower Standard

ANOVA

Log-transformed

Treatment

 $F_{1.398} = 408.1$

P < 0.0001

Location

 $F_{2,398} = 663.8$

P < 0.0001

Period

 $F_{2,398} = 4421.6$

P < 0.0001

Results: Fruit Damage Severity

- Attract-and-Kill
- Grower Standard

ANOVA

Log-transformed

Treatment

$$F_{1.398} = 408.1$$

Location

$$F_{2,398} = 663.8$$

Period

$$F_{2,398} = 4421.6$$

P < 0.0001

Results: Fruit Damage Severity

- Attract-and-Kill
- Grower Standard

ANOVA

Log-transformed

Treatment

$$F_{1.398} = 408.1$$

Location

$$F_{2,398} = 663.8$$

Period

$$F_{2,398} = 4421.6$$

per Tree Mean % Damaged Fruit (± SE)

Results:

Fruit Damage Frequency

- Attract-and-Kill
- Grower Standard

GLM

Binomial

Likelihood Ratio

Treatment

$$\chi^2 = 4.429$$

$$df = 1$$

P < 0.04

Location

$$\chi^2 = 13.5$$

$$df = 1$$

P < 0.0003

Period

$$\chi^2 = 84.6$$

$$df = 2$$

P < 0.0001

Chi-square

Results:

Fruit Damage Frequency

- Attract-and-Kill
- Grower Standard

GLM

Binomial

Likelihood Ratio

Treatment

$$\chi^2 = 4.429$$

$$df = 1$$

P < 0.04

Location

$$\chi^2 = 13.5$$

$$df = 1$$

P < 0.0003

Period

$$\chi^2 = 84.6$$

$$df = 2$$

P < 0.0001

Chi-square

Results:

Fruit Damage Frequency

- Attract-and-Kill
- Grower Standard

GLM

Binomial

Likelihood Ratio

Treatment

$$\chi^2 = 4.429$$

$$df = 1$$

P < 0.04

Location

$$\chi^2 = 13.5$$

$$df = 1$$

P < 0.0003

Period

$$\chi^2 = 84.6$$

$$df = 2$$

P < 0.0001

Chi-square

Results: **BMSB on Tarps**

- Adults
- Nymphs

ANOVA Adults

Log-transformed

Treatment

 $F_{1,45} = 0.330$

P < 0.566

Period

 $F_{2,523} = 124.1$

P < 0.0001

Interaction

 $F_{2,523} = 37.0$

P < 0.0001

Tukey's HSD

ANOVA Nymphs

Log-transformed

Treatment

 $F_{1,45} = 0.01$

P = 0.999

Period

 $F_{2.523} = 9.38$

P < 0.0001

Interaction

 $F_{2,523} = 3.0$

P < 0.05

Results: **BMSB on Tarps**

- Adults
- Nymphs

ANOVA ANOVA Adults Nymphs Log-transformed Log-transformed **Treatment Treatment** $F_{1,45} = 0.330$ $F_{1,45} = 0.01$ P < 0.566 P = 0.999Period Period $F_{2,523} = 124.1$ $F_{2,523} = 9.38$ P < 0.0001P < 0.0001Interaction *Interaction* $F_{2,523} = 37.0$ $F_{2,523} = 3.0$ P < 0.0001P < 0.05Tukey's HSD Tukey's HSD

Results: **BMSB on Tarps**

- Adults
- Nymphs

ANOVA ANOVA Nymphs Adults Log-transformed Log-transformed **Treatment Treatment** $F_{1,45} = 0.330$ $F_{1,45} = 0.01$ P < 0.566P = 0.999Period Period $F_{2,523} = 9.38$ $F_{2,523} = 124.1$ P < 0.0001P < 0.0001Interaction *Interaction* $F_{2,523} = 37.0$ $F_{2,523} = 3.0$ P < 0.0001P < 0.05Tukey's HSD Tukey's HSD

2015 Threshold Summary

Chi-Square

$$\chi^2 = 3.62$$

df = 1
P < 0.05

2015 Summary

- At harvest, half (or less) as frequent and severe of damage in AK block interior trees compared to grower standard
- Equivalent control in perimeter trees to grower std
- Killing 15 adults per week, per AK tree during the late

2016 Results: Higher population year

2016: Higher Populations

Adults

t = 3.97

P < 0.0001

Nymphs

t = 3.17

P < 0.005

2016: Higher Populations

Mean Severity (± SE) of Fruit Damage

Results: Fruit Damage Severity

- Attract-and-Kill
- Grower Standard

ANOVA

Log-transformed

Treatment

 $F_{1,400} = 770.0$

P < 0.0001

Location

 $F_{2,400} = 14.8$

P < 0.001

Period

 $F_{2,400} = 3191.8$

P < 0.0001

0.3 Early 0.2 ĄΒ Mean Severity (± SE) of Fruit Damage 0.1 Ç 0 Perimeter Interior Mid 2 Α 1.5 1 0.5 В В 0 Perimeter Interior

Results: Fruit Damage Severity

- Attract-and-Kill
- Grower Standard

ANOVA

Log-transformed

Treatment

$$F_{1,400} = 770.0$$

Location

$$F_{2,400} = 14.8$$

Period

$$F_{2,400} = 3191.8$$

P < 0.0001

Results: Fruit Damage Severity

- Attract-and-Kill
- Grower Standard

ANOVA

Log-transformed

Treatment

$$F_{1,400} = 770.0$$

P < 0.0001

Location

$$F_{2,400} = 14.8$$

P < 0.001

Period

$$F_{2,400} = 3191.8$$

P < 0.0001

per Tree Mean % Damaged Fruit (± SE)

Results:

Fruit Damage Frequency

- Attract-and-Kill
- Grower Standard

GLM

Binomial

Likelihood Ratio

Treatment

$$\chi^2 = 9.12$$

$$df = 1$$

P < 0.003

Location

$$\chi^2 = 4.22$$

$$df = 1$$

Chi-square

Results:

Fruit Damage Frequency

- Attract-and-Kill
- Grower Standard

GLM

Binomial

Likelihood Ratio

Treatment

$$\chi^2 = 9.12$$

$$df = 1$$

P < 0.003

Location

$$\chi^2 = 4.22$$

$$df = 1$$

Period

$$\chi^2 = 119.5$$

$$df = 2$$

Chi-square

Results:

Fruit Damage Frequency

- Attract-and-Kill
- Grower Standard

GLM

Binomial

Likelihood Ratio

Treatment

$$\chi^2 = 9.12$$

$$df = 1$$

P < 0.003

Location

$$\chi^2 = 4.22$$

$$df = 1$$

Period

$$\chi^2 = 119.5$$

$$df = 2$$

P < 0.0001

Chi-square

Mean Weekly H. halys Killed (± SE) Tree-1

Results: **BMSB on Tarps**

- Adults
- Nymphs

ANOVA	ANOVA
Adults	Nymphs
Log-transformed	Log-transformed
Treatment	Treatment
$F_{1,40} = 31.3$	$F_{1,40} = 68.1$
P < 0.0001	P < 0.0001
Period	Period
$F_{2,40} = 141.7$	$F_{2,40} = 182.7$
P < 0.0001	P < 0.0001
Interaction	Interaction
$F_{2,40} = 23.4$	$F_{2,40} = 36.2$
P < 0.0001	P < 0.0001
Tukey's HSD	Tukey's HSD

Mean Weekly H. halys Killed (± SE) Tree-1

Results: **BMSB on Tarps**

- Adults
- Nymphs

ANOVA	ANOVA
Adults	Nymphs
Log-transformed	Log-transformed
Treatment	Treatment
$F_{1,40} = 31.3$	$F_{1,40} = 68.1$
P < 0.0001	P < 0.0001
Period	Period
$F_{2,40} = 141.7$	$F_{2,40} = 182.7$
P < 0.0001	P < 0.0001
Interaction	Interaction
$F_{2,40} = 23.4$	$F_{2,40} = 36.2$
P < 0.0001	P < 0.0001
Tukey's HSD	Tukey's HSD

Results: **BMSB on Tarps**

- Adults
- Nymphs

ANOVA ANOVA Nymphs Adults Log-transformed Log-transformed **Treatment Treatment** $F_{1,40} = 31.3$ $F_{1,40} = 68.1$ P < 0.0001P < 0.0001Period Period $F_{2,40} = 141.7$ $F_{2,40} = 182.7$ P < 0.0001P < 0.0001Interaction *Interaction* $F_{2,40} = 23.4$ $F_{2,40} = 36.2$ P < 0.0001P < 0.0001Tukey's HSD Tukey's HSD

2016 Threshold Summary

Chi-Square

$$\chi^2 = 0.027$$

df = 1
P = 0.869

2016 Summary

- At harvest, statistically equivalent frequency and severity of damage in AK block interior trees compared to grower standard
- Equivalent control in perimeter trees to grower std
- Killing >40 adults per week, per AK tree during late season

Economics Comparisons of Attract-and-Kill

Attra	act and Kill	Standard
Mean No. of BMSB Sprays	15	3
Percentage of Trees Sprayed	3-4	100
Percentage of Active Ingredient Applied	d 20%	100%
Cost of BMSB lures/per A/season	\$1500	0
Cost of BMSB Sprays/per A/season	\$6-20	\$30-100

Economics Comparisons of Attract-and-Kill

	Attract and Kill	Standard
Mean No. of BMSB Sprays	15	3
Percentage of Trees Sprayed	3-4	100
Percentage of Active Ingredient	Applied 20%	100%
Cost of BMSB lures/per A/seasor	n \$1500	0
Cost of BMSB Sprays/per A/seaso	on \$6-20	\$30-100

Take Home Messages

- Attract-and-kill is an effective pest management strategy
- **But:** not cost effective
- Unless lure price or deployment strategy can be significantly altered, no grower will adopt this

Acknowledgements

USDA-ARS, NE SARE

project and find links to

Thank you for your attention!

In the field one morning...