

Fire blight IPM using non-antibiotic control methods

United States National Institute Department of Food and Agriculture Agriculture

Webinar Details

- Welcome
- A recording of this webinar will be available within a week at

http://www.neipmc.org/go/ipmtoolbox

We Welcome Your Questions

 Please submit a question at any time using the Q&A feature to your right at any time

• If you'd like to ask a question anonymously, please indicate that at the beginning of your query.

Webinar Presenters

Quan Zeng

Dan Cooley

Neil Schultes

@Plant_doc

Today's Agenda

- Fire blight hosts, pathogens, symptoms
- Critical steps of disease cycle
- Control strategies
- Non-antibiotic trial results
- Questions

Some Questions For You

United States National Institute Department of Food and Agriculture Agriculture

Fire blight disease

-the host, the pathogen, and the symptoms

- <u>Host</u>: Rosaceous plants such as apple, pear, quince, loquat, plum, Indian hawthorn, crab apple, rose, mountain ash, service berry, raspberry, blackberry.
- <u>**Pathogen**</u>: bacterium Erwinia amylovora.
- Symptoms: tissue turning brown or black, appear dried and shriveled. Two characteristic symptoms are the "shepherd's crook" and "ooze droplets".

Fire blight disease -the host, the pathogen, and the symptoms

Identify the critical steps of disease cycle for intervention

Fire blight disease -Emerging challenges

- High density orchard planting system increases the risk of fire blight.
- -Per acre value increased.

ce

-M

-Di 1000–1500 trees per acre

Strategies to control fire blight

• Disease will occur when three components are fulfilled: the host, the pathogen, and the environment.

A year-round management strategy—the basics

Winter / Early spring Green tip	Prune off fire blight cankers Use copper to sterilize canker surface
Bloom	Use antibiotics, copper, SAR inducers, biological controls to limit pathogen growth
Petal fall	Use apogee to limit shoot growth
Active shoot growth	Prune off infected shoots
Terminal bud set	

Why do we need more than strep?

 Streptomycin resistance has emerged and is No strep With strep spreading.

WA, OR, CA, UT, MI, NY...

Sensitive

 Organic growers are not allowed to use antibiotics after October 2014.

tting Science to Work for Socie

Questions?

Quan Zeng

Dan Cooley

Neil Schultes

Unas

@oldkayak

@Plant_doc

Non-antibiotic materials to limit pathogen growth

- Organic bactericides
 Copper, surface sterilant.
- Biological controls

Bacteria, viruses, yeasts.

1. <u>Which products provide the best control against</u> <u>fire blight in the Northeast?</u>

2. <u>Can we further enhance the efficacy by using</u> <u>the two categories of products together?</u>

Field trial set up

- 25-year old apple trees 'red delicious'
- 4 reps per treatment, in a complete randomized design.

Materials tested

Treatment	Active ingredient			
Double Nickel	Bacillus amyloliquefaciens, bacteria			
BlightBanA506	Pseudomonas fluorescens, bacteria			
Blossom Protect	Aureobasidium pullulans, yeast			
Bloomtime	Pantoea agglomerans, bacteria			
Cueva	Copper octanoate, organic bactericide			
OxiDate 2.0	Hydrogen dioxide + peroxyacetic acid, surface sterilant			
FireWall	Streptomycin, antibiotic			
Water	control			

Timing of application

- Biological controls: @ 30% and 70% bloom
- Organic chemicals: @100% bloom and 24 hr after.
- *E. amylovora* inoculation: 10⁶ CFU/ml @ 100% bloom
- Disease rating: % of blighted clusters, 3 weeks later.

2017 Hamden, CT trials

2018 Hamden, CT Trials

2019 Hamden, CT Trials

2015 Hamden, CT trials

2018 Belchertown, MA trials

Comparison of organic and conventional controls

Equivalent to the percentage of control by Streptomycin

	2015	2017	2018	2019	Overall
Blossom Protect	45%	38%	138%	115%	84%
Blossom Protect + OxiDate	91%	75%	143%	130%	110%

Summary of observations

- <u>Blossom Protect</u> provided consistent, high level of protection against blossom blight.
- The control effect of Blossom Protect can be further enhanced by *organic bactericides*.
- Other biological and organic chemical products provide some level of control and can be useful when disease pressure is low.

Recommended non-antibiotic fire blight control protocol

- <u>Early to full bloom</u>: two applications of Blossom protect (with buffer protect).
- Full bloom: one application of 0.3% OxiDate (2.0 or TV)
 Subject to adjustment based on disease prediction models
- <u>24 hours after full bloom</u>: one application of 0.3% OxiDate (if disease pressure is high / history of fire blight).

Questions?

Quan Zeng

Dan Cooley

Neil Schultes

Unas

@oldkayak

@Plant_doc

Some Questions For You

United States National Institute Department of Food and Agriculture Agriculture

Upcoming Events

2020 RFA is available: Deadline November 15th

https://www.northeastipm.org/grant-programs/ipm-center-grants/ipm-partnership-grants/

New Tools for Identifying and Prioritizing Range-Shifting Invasive Plants

Tuesday, November 5th, 2:00 p.m. – 3:00 p.m.

Jenica Allen, Campus Living Laboratory Manager, Mount Holyoke College Bethany Bradley, Associate Professor, University of Massachusetts Amherst https://www.northeastipm.org/ipm-in-action/the-ipm-toolbox/

Fifth IPM On-Line Conference

Wednesday, October 30th, 9:30 a.m. – 12 noon

The rapid style conference will feature 5 minute presentations in which the speakers will discuss, show, or possibly sing! about 1 or 2 highlights from their projects. <u>https://www.northeastipm.org/ipm-in-action/current-news/fifth-integrated-pest-management-online-conference/</u>

Find a Colleague

• To post a profile about yourself and your work:

http://neipmc.org/go/APra

• "Find a Colleague" site

http://neipmc.org/go/colleagues

Archive of Today's Webinar

 Today's Webinar will be available to view on demand in a few business days.

http://www.neipmc.org/go/ipmtoolbox

• You can watch as often as you like.

Acknowledgements

This presentation was funded in part by the Northeastern IPM Center through Grant #2018-70006-28882 from the National Institute of Food and Agriculture, Crop Protection and Pest Management, Regional Coordination Program.