

Increasing propagule transport is main cause of biological invasions

Invasive species affect ecosystem-level properties and processes

Dukes and Mooney 1999, TREE

Global changes may increase success of invasive species

Dukes and Mooney 1999, TREE

Invasive species may affect rates of some global changes

Today: climate and invasions

What worst-case scenario concerns you most?

Hellmann et al. 2008

Climate change could affect each of the barriers to invasion

Hellmann et al. 2008

Each invader may be affected at different stages and scales...

Climate change will alter some impacts

$$\begin{array}{ll} \text{Size of} \quad \text{X} \quad \begin{array}{ll} \text{Abundance} \quad \text{X} \quad \begin{array}{ll} \text{Per capita} \\ \text{in range} \end{array} \quad \text{X} \quad \begin{array}{ll} \text{Per capita} \\ \text{effect} \end{array} = \quad \begin{array}{ll} \text{Absolute} \\ \text{impact} \end{array}$$

Climate change will alter some impacts

Climate change will alter some impacts

Can you think of an example?

Climate can indirectly affect impact

- Tamarix is thought to use more water than natives
- Decreasing regional precipitation would increase economic impact (Zavaleta 2000)

Will global changes favor invasive species?

Element of global change	Prevalence of plant invaders ^a
Increased atmospheric CO ₂	+
Rising temperature	±
Changing precipitation regime	±
Changing land use or land cover	+
Increased N deposition	+
Increased global commerce	+

a+ Likely to increase invasion risk for many plant species; ± Might increase or decrease invasion risk

Management options may determine outcome in different systems

Ag system

Management options may determine outcome in different systems

CO2

Temperature

Precipitation Extreme events **Natural** Slow-growing Fast-growing native species invasive species system

Some working hypotheses:

General responses of invasives (or non-natives) vs. natives

Do non-native species respond more strongly than natives to global change?

Some native systems would seem to be poorly adapted to a *changing* climate...

- Traits that preclude rapid range shifts or rapid adaptation
 - Long juvenile period
 - Long lifespan
 - Little dispersal

...if biotic resistance erodes, these systems may be more easily invaded in the future

Many invasives are well adapted to a changing climate

- Traits that allow rapid range shifts
 - Short juvenile period
 - Long-distance dispersal

Invasive plants track climate change better

- In New England, invasives shifted flowering times to match climate faster than natives
 - Now flowering 11 days earlier than natives

Invasives are often more climate-tolerant than non-invasives

• In some families, invasives span greater latitudes in native ranges (Rejmánek 1995)

Probability of plant species being invasive increases with breadth of native range

(Goodwin et al. 1999)

Invasives are often more climatetolerant than non-invasives

- Disruption of mutualistic relationships
 - Invasive plant species unlikely to need specialist pollinators

Ok, but... Give us specific predictions!

- How will ranges shift?
 - Some invasives might be expected to benefit as suitable area increases
 - Potential ranges of other invasives might contract

 One tool for predicting range shifts: "nichebased" or "species distribution" models

Suitable climate for yellow starthistle

Suitable climate for yellow starthistle

Suitable climate for yellow starthistle

Drawbacks of niche-based models

- Often ignore soil type (plants)
- Too coarse in spatial scale; omit topography, microclimates
- Ignore effects of CO₂, etc. (plants)
- Competition not explicitly in models
- Biocontrol ranges not in models

But niche-based models have many advantages! So...

 Can we bring together modelers and experimentalists to improve them?

 Can we improve them by <u>collecting more</u> detailed, widespread, and standardized data on invasive species' ranges?

How well prepared are we for new invasion threats?

ARTICLE

Received 2 Sep 2015 | Accepted 7 Jul 2016 | Published 23 Aug 2016

DOI: 10.1038/ncomms12485

OPEN

Global threats from invasive alien species in the twenty-first century and national response capacities

Regan Early¹, Bethany A. Bradley², Jeffrey S. Dukes^{3,4}, Joshua J. Lawler⁵, Julian D. Olden⁶, Dana M. Blumenthal⁷, Patrick Gonzalez^{8,9}, Edwin D. Grosholz¹⁰, Ines Ibañez¹¹, Luke P. Miller¹², Cascade J.B. Sorte¹³ & Andrew J. Tatem^{14,15,16}

New work: Future invasion threats

Early et al.

Nature Comm.

2016

New work: Future invasion threats

Early et al. *Nature Comm.* 2016

Readiness: Are countries prepared?

Based on 2014 reports to the (UN) Convention on Biological Diversity Early et al. *Nature Comm.* 2016

Threat vs. readiness

Early et al. Nature Comm. 2016

Can't get enough on invasive species and global change?

Two books with Lew Ziska (2011, 2014)

