Vegetation-Insect Dynamics in Earth System Models

Challenges and opportunities
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Vegetation-Insect Dynamics in Earth System Models
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Uncertainty in the simulated terrestrial carbon sink
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Key components that control vegetation carbon and fluxes
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Mortality mechanisms in current Earth System Models

Mortality algorithms

Productivity dependence
Background rate

Climate tolerance
Size threshold

Age threshold

Heat stress threshold

Negative productivity
Shading/competition
Growth efficiency threshold

Carbon starvation

No explicit concept of mortality; plant biomass reduced via declining productivity [88]

Mortality is set at a constant, invariant rate (approximately 1-2% yr~'). This does not allow climate to
drive variation in mortality [89-91]. In [12,92], background mortality increases as wood density decreases
relative to the community maximum

Death occurs if the 20-year average climate exceeds predefined monthly climatic tolerances [93-96]
Death occurs if trunk diameter > 1.0 m [96].
Death increases as stand age approaches the plant functional type-specific maximum [84]

Mortality is a function of the number of days per year in which the average temperature exceeds a threshold
temperature, and the number of degrees (“C) by which this threshold is exceeded [84,92-97]

Death occurs if annual net productivity < 0.0 g [93-96]
Mortality increases as a function of canopy cover [12,92-97]

Mortality occurs when biomass increment per unit leaf area falls below a quantitative threshold that
varies between models [86,93-96,98]
Mortality is a function of carbohydrate storage per unit leaf biomass [12]

McDowell et al 2011.



Impact of insect-caused tree mortality in the past
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Proportion of insect-caused mortality in US from 2000-2015 based on FIA data
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Impact of insect-caused tree mortality in the future

* Higher temperatures in the future could facilitate the development of
insects and lead to earlier adult emergence, or multiple attacks from
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multiple life cycles.
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Impact of insect-caused tree mortality in the future

* Higher temperatures in the future could facilitate the development of
insects and lead to earlier adult emergence, or multiple attacks from
multiple life cycles.

Eastern larch beetle life cycle
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Impact of insect-caused tree mortality in the future

* Higher temperatures in the future could facilitate the development of
insects and lead to earlier adult emergence, or multiple attacks from
multiple life cycles.
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Impact of insect-caused tree mortality in the future

* Winter insect survival will be increased by the overall winter warming in
the future
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Impact of insect-caused tree mortality in the future

 Heat waves and cold spells during winter and early spring that reduce
insect cold hardening may augment mortality
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Impact of insect-caused tree mortality in the future

Risk of heave waves
during year
2075-2100 compared
to 1850-2100
predicted by GFDL-
ESM2G model.
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Risk of heave waves during 2075-2100 compared to 1850-2000
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Impact of insect-caused tree mortality in the future

« Extreme events of droughts and heat waves in the future could reduce
the plant defense and thus lead to higher risks of insect outbreaks
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Impact of insect-caused tree mortality in the future

- Extreme events of droughts and heat waves in the future could reduce
the plant defense and thus lead to higher risks of insect outbreaks,
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Current climate-dependent forest insect outbreak models

1.

Individual-based modeling

Régniére et al (2015) Individual-based
modeling: mountain pine beetle
seasonal biology in relation to climate.

Partial differential equation
modeling

Powell & Bentz (2014) Phenology and
density-dependent dispersal predict
patterns of mountain pine beetle
(Dendroctonus ponderosae) impact.

Vegetation susceptibility
modeling

LANDIS (Sturvant et al
2004)
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Challenges of incorporating insect population dynamics into ESMs

» Lack of consistent insect outbreak data (tree infestation vs insect

population)

Lack of appropriate vegetation models (size and plant functional types)

Lack of appropriate vegetation defense models

Representation of stochasticity

Limited data on insect physiology

Lack of data on dispersal and its difficulty in implementation for ESM

Los Alamos National Laboratory 10/11/16 | 16



Solutions 1: Demographic vegetation model

Mortality

Big leaf model , Growth
‘. Recruitment Competition

Co-existence
Exclusion

15 year-old forest 50 year-old forest 150 year-old forest

Moorcroft et al 2001; Fisher and McDowell et al 2010. Fisher et al. 2015.
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Solutions 2: Stochasticity representation
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Solutions 2: Stochasticity representation

Expected number of individuals
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Solution 3: Insect attack and vegetation defense

B Observed beetle
O Predicted beetle
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Solution 4: Benchmarking data

Forest inventory
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Disturbance attributions

Forest disturbance map from 2000-2014.
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Areas affected by different disturbance types (2000-2014) in Continental US

Harvest-induced Mortality Area Fire-caused Mortality Area
e \ = I ‘ i
{ Lt 1 (T /B
\ Z ] p ) - ‘lg, — | o b2
’; :\- i; : u\F ’L:;;-: o d
’ Lp il o
Drought/Insect-associated Mortality Area Others-associated Mortality Area
F 2 | :‘\T_;»
l N 3 S
| 1 “ j

Forest Mortality Area (km*2)

\ ] ] ] l | | A 0 700 1,400 2,800 Miles
L

0 25 50 100 300 500 700 900 1400

Los Alamos National Laboratory Wang and Xu et al. In Prep_ 10/11/16 | 23



Percent Carbon loss (2000-2014) by disturbance types in Continental US

60%

53.4%
50%
40%
30%
24.5%

20%

14.5%
10% 7.6%

0%
Fire Harvest Drought/Insect Others

Los Alamos National Laboratory Wang and Xu et al In Prep 10/11/16 | 24



Solution 5: Forest management
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Path forward

* Interactions of tree physiology community and entomology
community

« Coordination and compiling of insect outbreak census across
different countries

 Modex (Model experimental integrations)

* Improved understanding and predictions of interactions among
different disturbance agencies (fire, insect and droughts)

+ ldentify key drivers for “background” mortality in ESMs

Early Current Future

W Fire
| Light
competition

Drought

M Insect

background

m Inset/drought
interaction
= Windthrow

Background
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