# Developing a Behaviorally-Based Attract and Kill System for Spotted Wing Drosophila

Leskey Laboratory
USDA ARS
Appalachian Fruit Research Station
Kearneysville, WV 25430



# Optimizing Components of Trap-Based Monitoring and Management Systems

- Visual Stimulus
- Olfactory Stimulus
- Deployment Strategy
- Capture Mechanism



# Perimeter-Based Attract and Kill System for Apple Maggot







#### "Proof of Concept" Attract-and-Kill Study

Will SWD alight on red spheres?
What effect does their presence have on infestation?



- Released 25 males and 25 females into field cages.
- Treatments
  - Sphere alone
  - Sphere + olfactory attractant
  - Sphere + raspberry plant
  - Sphere + olfactory attractant
     + raspberry plant
  - Raspberry plant alone
- Flies foraged freely for 48 h.
- Recorded number of SWD captured (kill) and number of larvae + pupae recovered from fruit (control).



### Can We Develop an Attract and Kill System for SWD?

- Visual Stimulus
- Olfactory Stimulus
- Deployment Strategy
- Capture Mechanism



### **Does SWD Respond To Visual Cues?**



#### What Did We Know?

- Visual cues used by drosophilids to discriminate among hosts (Menne and Spatz 1977).
- Drosophila melanogaster utilizes visual cues, particularly vertical edges, when responding to odor (Frye et al. 2003).
- Basoalto et al. (2013) reported that flies responded in greatest numbers to red and black stimuli in laboratory studies, but didn't necessarily translate in the field.

### Visual Ecology of SWD

Identifying Attractive
 Visual Cues

Color, Shape and Size

 Laboratory, Semi-field and Field Trials



### **Visual Stimuli**

Color



Shape



Size









#### Laboratory

- Release 20 colony-reared, mature anesthetized SWD into cage.
- SWD permitted to freely forage for 6h.



#### Semi-Field

- Release 30 colony-reared, mature anesthetized SWD.
- SWD permitted to freely forage for 48h.



#### **Field**

- Assess response of wild SWD populations.
- Stimuli in field for 48h.





### **Conclusions From Visual Ecology Trials**

SWD do respond to visual cues.

 Color appears important as black and red routinely outperformed other colors.

 A spherical shape with a size greater than 2.5 cm appears acceptable.

#### **Could An Olfactory Attractant Improve Efficacy?**



### 2014 Bait Comparison In Standard Deli Cups



#### 2014 Bait Comparison In Association With Spheres



### Can We Replace Tangletrap as Killing Agent?

 Evaluate lethality of attracticidal spheres developed for AMF for SWD.

 Cap contains a feeding stimulant (sugar) and toxicant.

 Exploits environmental moisture to continuously renew toxicant on sphere surface.



# **Laboratory Evaluation of Lethality**

- Insecticides: Bifenthrin, Lambda-cyhalothrin, Spinetoram, and Spinosad.
- Rates: 0.0, 0.01, 0.1, 0.5 and 1.0% a.i.
- Evaluated a minimum 20 males and 20 females/insecticide/rate.
- Released at sphere equator and allowed to forage freely for 5 min. Measured foraging time.
- Evaluated toxic effects at 0, 24 and 48 h after exposure



# Lethality



## Field Trial of Attracticidal Spheres

Can we reduce SWD infestation in a susceptible crop using

attracticidal spheres?



## **Experimental Set-Up**



- Potted raspberries with ripe fruit placed in field.
- Four experimental treatments evaluated for SWD management.
  - 1) weekly sprays (Brigade, Entrust or Danitol)
  - 2) 1% Delegate attracticidal spheres (1 per plant)
  - 3) sprays + spheres
  - 4) Control
- Monitored SWD populations with traps baited with yeast/sugar.
- Harvested ripe berries and evaluated infestation rates.

#### Infestation Rates from Attracticidal Sphere Field Trial



#### Can We Find a Better Insecticide Formulation?





# **Continued Lethality Trials**

- Toxicant Requirements With Current System
  - Dry formulation
  - High % Al
  - Ideally, an organically approved material

Venom (Dinotefuran) was very promising in laboratory trials.

1% Venom used in field trials in 2014.

### 2014 Field Trial

- Raspberry planting.
- Four experimental treatments evaluated for SWD management.
  - 1) weekly sprays (Brigade, Delegate or Danitol)
  - 2) 1% Venom attracticidal spheres (1 per plant)
  - 3) sprays + spheres
  - 4) Control
- Monitored SWD populations with traps baited with yeast/sugar.
- Harvested ripe berries and evaluated infestation rates.



First Harvest Sample (8/19/2014)

### What If We Include A Bait?

- Raspberry plots of four NH Growers.
- Two experimental treatments evaluated for SWD management.
  - 1) Grower Control (Normal Practice)
  - 2) Grower Control + 1% Venomattracticidal spheres (1 sphere every 3 m)+ Trece SWD Bait
- Harvested ripe berries and evaluated infestation rates.



# **Preliminary Results**



### **Tentative Conclusions**

 Baited attracticidal spheres appeared to have a positive impact on SWD infestations in raspberry plantings.

Lower infestation rates in all samples, except one.

As populations increase, control breaks down.

## **Next Steps**

 Behavioral trials assessing SWD response to spheres +/- baits in context of host plants.

SWD behavior in host plants.

Attracticidal sphere formulation issues.

Deployment strategy.

### **Post-Doctoral Position Available**

 Leskey laboratory seeking a post-doctoral researcher to aid in trials aimed at understanding the behavioral ecology of SWD and developing an effective behaviorally-based management strategy for this invasive pest. Email Tracy Leskey at <u>tracy.leskey@ars.usda.gov</u> for more information.

# Acknowledgments

