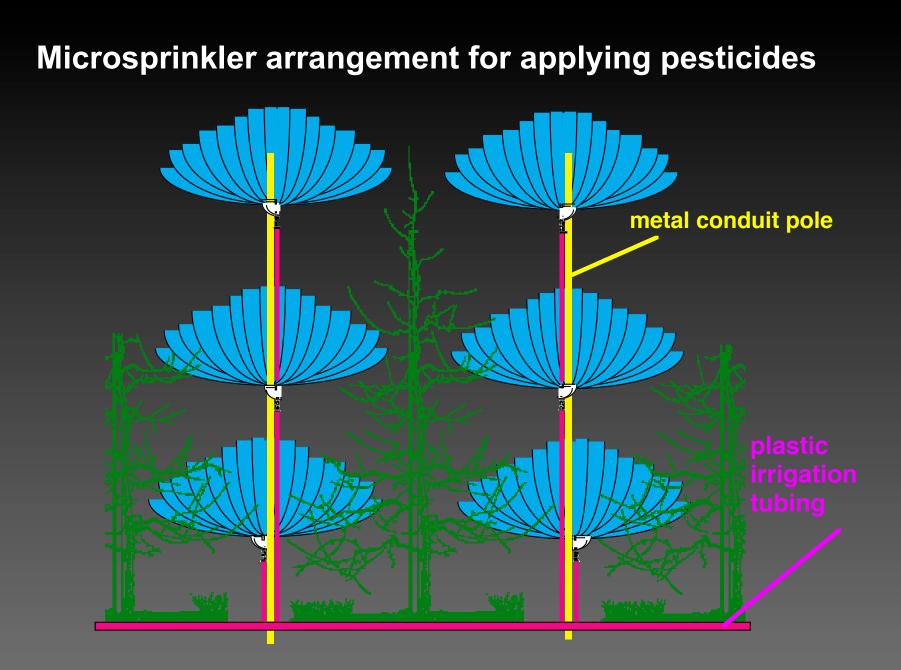
# Progress in the Devlopment of an In-Canopy Fixed Spraying System for High-Density Apple Orchards



Arthur Agnello



& Andrew Landers Dept. of Entomology Cornell University New York State Agricultural Experiment Station Geneva, NY USA


# Conventional approach to pesticide application in apple orchards



Use of airblast sprayers can be inefficient and inaccurate

- spray drift
- off-target contamination
- ineffective pest control





## 1999: Initial trials using fixed spray method



Study Site for Fixed Spray Evaluation, 2007 Fowler Farms

Wolcott, NY





- Mature 'Gala' block, 0.9 A
- "Super Spindle" planting system
- Row spacing 10 ft
- Tree spacing 2 ft



#### <sup>3</sup>/<sub>4</sub>-inch polyethylene tubing

- Minimized number of branch points and reductions in tubing diameter to avoid excessive pressure loss between pump and nozzles.
  Attached nozzles directly to line within row

## Lateral Line Support System



- No air-assist, limited canopy penetration; use in high-density plantings only
- Incorporated supply lines into tree support system
- Used dual (high and low) lateral lines, and sprayed from row center outwards

## **Supply Manifold Support System**





trellis support post 2-inch PVC Schedule 80 pipe

Mounted supply line overhead, using rigid PVC pipe attached to the trellis support posts

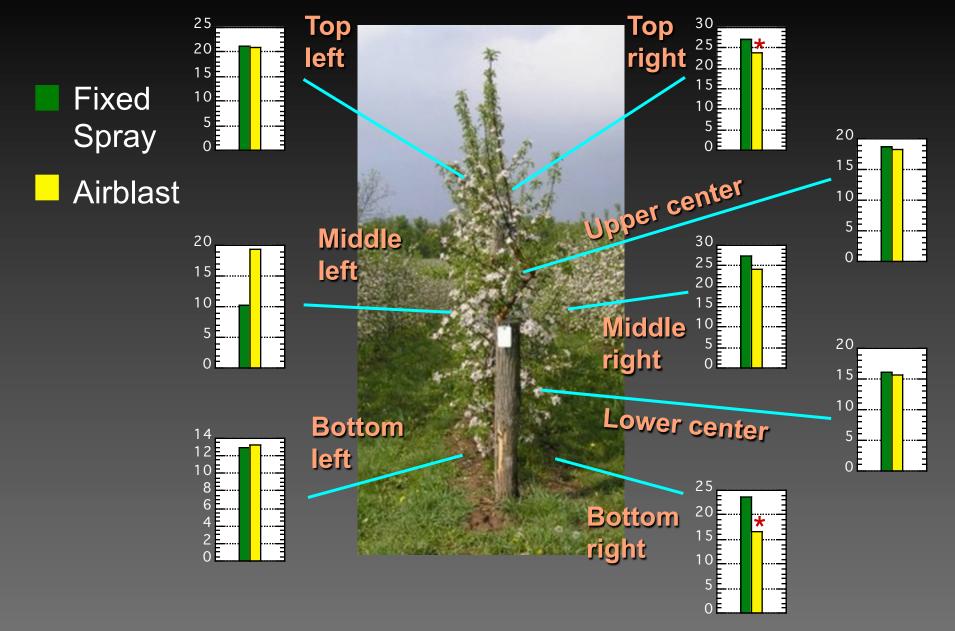
# **Pesticide Injection**

#### **Mobile Pumping Unit**



- Could use airblast sprayer to pump the solution, but most sprayer pumps provide ~35 gal/min; need 3x that capacity
- Built a mobile unit with tank and a suitable pump; transported to a central injection site

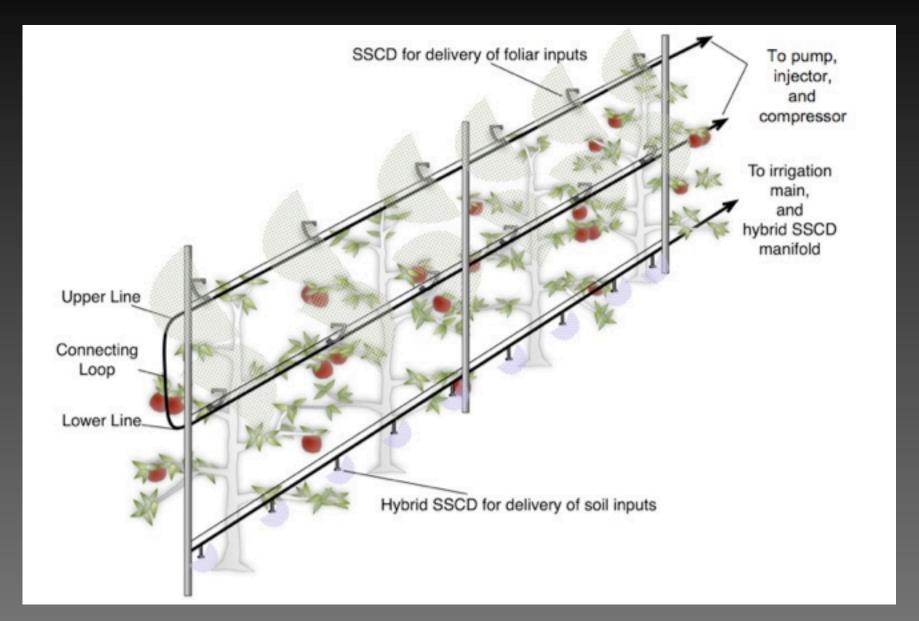
## **Spray Applications**




- Mixed pesticides with water in the main tank; pumped spray solution into tubing and through nozzles until desired amount (flowmeter) was deposited on trees. Flushed with clean water 24 hr later.
- Sprays made to half of block (~0.5 Acre, comprising 6 rows of fixedspray system), using grower's regular schedule of pesticides.
- Other half received same sprays applied with an airblast sprayer.
- Application process on each date required 2-3 minutes of operation.
- Compared pest control, thinning results, and spray deposition (dye).

#### OBLR Fruit Damage\* at Harvest - 2007 2 **Fixed** Plum Curculio 1.5 TPB % Fruit Damage 1 Apple Maggot 0.5 0 Internal Lepidoptera Apple Scab

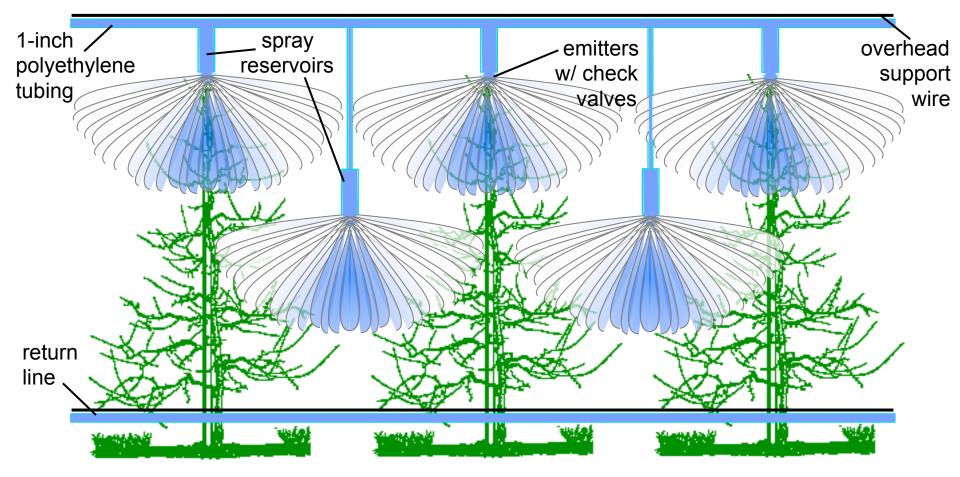
\* No significant differences between treatments


# Spray Deposition on Foliage (µg/cm<sup>2</sup>)



#### **Complexities Needing to be Addressed**

- Need better control of flow within the orchard piping for uniform and precise chemical delivery
- Chemical mixing and supply: controls needed to fill piping system with appropriate amount of spray material to wet canopy surfaces and give even application from the <u>first</u> nozzle to the <u>last</u>
- Emitter orientation & deposition: need uniformity in coverage among emitters, adequate canopy penetration, and an even spray pattern
- More practical way to eliminate residual spray solution from system
- Considerations for commercial adoption:
  - Efficiency in scaling up to practical size (pump, lines, nozzles)
  - Seasonal maintenance needs
  - Multi-season durability
  - Economics: Total fixed cost (pumping unit) \$2283;
  - Per-A cost (support structure, piping, tubing, nozzles \$2176 per A


#### Initial Proposal for Design of Solid-Set Canopy Delivery System



## **Current System Modifications and Redesigns**

- Installed pressure-compensating valves and leakprevention nozzles to delay and synchronize emission of sprays at a target pressure after lines have been fully charged
- Minimize non-target deposition by supplying each emitter with just enough spray material to adequately cover tree canopy surfaces below it
- Use compressed air to recirculate and re-capture excess spray solution, effect spray delivery, and purge residue from lines
- Spray material is delivered sequentially to small section of orchard at a time (1-2 rows; 15-30 sec each) from a premixed tank, through irrigation lines fixed above each row

#### Current Design of Solid-Set Canopy Delivery System



**Spray Application Process** 

- Pump used to fill all tubes and reservoirs from tank containing mixed spray materials
- Compressed air clears main supply tubes, returns excess material to spray tank
- Compressed air at a higher pressure opens check valves, all emitters spray out pesticide solution (15 sec for ~50 gal/A)

















# **Potential Benefits**

- Lower labor requirements, equipment upkeep possibly cheaper; potential for a greater degree of automation or precision operation
- Ability to spray in orchard conditions where tractor operation may not be optimal (e.g., early season, low-light hours; highly sloping blocks)
- Short application time:
  - take advantage of narrow application windows
  - multiple sprays and re-sprays much easier; can use short-residual (least-toxic) materials, sprayable pheromones; rescue treatments
- Minimal drift and off-target deposition; quieter operation; less impact on neighbors, adjacent property or roads
- Readily adaptable to use for irrigation, frost protection, sunburn protection

# Acknowledgments

- Cooperating growers: John and J.D. Fowler, Fowler Farms, Wolcott, NY
- Irrigation specialists: Dr. Walid Shayya, SUNY-Morrisville; Dr. Ian McCann, Univ. of Delaware; John Nye, Trickl-Eez Co., St. Joseph, MI
- Funding Support: USDA Federal Formula Funds program, Northeast IPM Center; USDA SCRI Grant No. 2011-51181-31037