Attract-and-Kill of BMSB: A SARE Project Summary

Rob Morrison ${ }^{1}$, A. Nielsen ${ }^{2}$, J.C. Bergh ${ }^{3}$, G. Krawcyzk ${ }^{4}$, B. Blaauw ${ }^{5}$, B. Short ${ }^{1}$, and T.C. Leskey ${ }^{1}$
${ }^{1}$ Appalachian Fruit Research Station, USDA-ARS, Kearneysville, WV
${ }^{2}$ Department of Entomology, Rutgers University, Bridgeton, NJ
${ }^{3}$ AREC, Virginia Tech, Winchester, VA
${ }^{4}$ Department of Entomology, Penn State, Biglerville, PA
${ }^{5}$ Department of Entomology, University of Georgia, Athens, GA

Conventional Management for BMSB

- ARM or full block sprays of broad spectrum materials (Rice et al. 2014; Lee 2015)

Conventional Management for BMSB

- ARM or full block sprays of broad spectrum materials (Rice et al. 2014; Lee 2015)
- Not sustainable in the long term

Recent Advances with Pheromones

- BMSB aggregation pheromone identified as two stereoisomers of 10,11-epoxy-1-bisabolen-3-ol (Khrimian et al. 2014)
- Attraction is synergized when combined with methyl decatrienoate (weberetal. 2014)

Attract-and-Kill as Alternative Strategy

Attract-and-Kill as Alternative Strategy

Preliminary Work with AK

- Over 6 days, killed ~28,000 adults and ~5,000 nymphs at trees with high dose of pheromone (Morrison et al. 2016)
- High retention capacity of AK trees and low spillover into rest of orchard (Morrison et al 2016)

Commercial Attract-and-Kill

-On 10 farms in 2015 \& 2016

Sustainable Agriculture Research \& Education

Commercial Attract-and-Kill

-On 10 farms in 2015 \& 2016
-Two treatments: AK vs. grower std.

Attract-and-Kill Block

VS.
Grower Standard

Commercial Attract-and-Kill

-On 10 farms in 2015
-Two treatments: AK vs. grower std.

Commercial Attract-and-Kill

-On 10 farms in 2015
-Two treatments: AK vs. grower std.
-Safeguard with spray triggered by monitoring trap

Commercial Attract-and-Kill

Damage Incidence per Tree

10 fruit per tree

Counts of Killed BMSB on Tarps

At 4 sites across 4 states

23 AK trees
17 Control Trees

BMSB adults \& nymphs

Split Season Into Three Periods

Early
 Before Jun 15th

Mid Jun 15 th - Aug 15 ${ }^{\text {th }}$

Harvest
After Aug 15 ${ }^{\text {th }}$

2015 Results: Low population year

2015 Threshold Summary

Chi-Square
$\chi^{2}=3.62$
$d f=1$
$P<0.05$

2015 Summary

- At harvest, half (or less) as frequent and severe of damage in AK block interior trees compared to grower standard
- Equivalent control in perimeter trees to grower std
- Killing 15 adults per week, per AK tree during the late

2016 Results: Higher population year

2016: Higher Populations

Adults
$\mathrm{t}=3.97$
P < 0.0001
Nymphs
$\mathrm{t}=3.17$
P < 0.005

2016: Higher Populations

Adults
$\mathrm{t}=3.97$
P < 0.0001
Nymphs
$\mathrm{t}=3.17$
P < 0.005

Year

Results:
 Fruit Damage Frequency

- Attract-and-Kill

■ Grower Standard
GLM
Binomial
Likelihood Ratio
Treatment
$\chi^{2}=9.12$
$\mathrm{df}=1$
$\mathrm{P}<0.003$
Location
$\chi^{2}=4.22$
df = 1
$\mathrm{P}<0.04$
Chi-square
w/Bonferroni correction

2016 Threshold Summary

Chi-Square
$\chi^{2}=0.027$
$\mathrm{df}=1$
$\mathrm{P}=0.869$

2016 Summary

- At harvest, statistically equivalent frequency and severity of damage in AK block interior trees compared to grower standard
- Equivalent control in perimeter trees to grower std
- Killing >40 adults per week, per AK tree during late season

Economics Comparisons of Attract-and-Kill

Attract and Kill

Mean No. of BMSB Sprays	15	3
Percentage of Trees Sprayed	$3-4$	100
Percentage of Active Ingredient Applied	20%	100%
Cost of BMSB lures/per A/season	$\$ 1500$	0
Cost of BMSB Sprays/per A/season	$\$ 6-20$	$\$ 30-100$

Economics Comparisons of Attract-and-Kill

Attract and Kill
Standard

Take Home Messages

- Attract-and-kill is an effective pest management strategy
- But: not cost effective
- Unless lure price or deployment strategy can be significantly altered, no grower will adopt this

Acknowledgements

- USDA-ARS, NE SARE

Rob Morrison
Tracy Leskey

Thank you for your attention!

In the field one morning...

