

Attract-and-Kill of BMSB: A SARE Project Summary

Rob Morrison¹, A. Nielsen², J.C. Bergh³, G. Krawcyzk⁴, B. Blaauw⁵, B. Short¹, and T.C. Leskey¹

- ¹ Appalachian Fruit Research Station, USDA-ARS, Kearneysville, WV
- ² Department of Entomology, Rutgers University, Bridgeton, NJ
- ³ AREC, Virginia Tech, Winchester, VA
- ⁴ Department of Entomology, Penn State, Biglerville, PA
- ⁵ Department of Entomology, University of Georgia, Athens, GA

Conventional Management for BMSB

• ARM or full block sprays of broad spectrum materials (Rice et al. 2014; Lee 2015)

Conventional Management for BMSB

- ARM or full block sprays of broad spectrum materials (Rice et al. 2014; Lee 2015)
- Not sustainable in the long term

Recent Advances with Pheromones

- BMSB aggregation pheromone identified as two stereoisomers of 10,11-epoxy-1-bisabolen-3-ol (Khrimian et al. 2014)
- Attraction is synergized when combined with methyl decatrienoate (Weber et al. 2014)

Active components of 10,11-epoxy-1-bisabolen-3-ol

Methyl decatrienoate (MDT)

Attract-and-Kill as Alternative Strategy

Attract-and-Kill as Alternative Strategy

Preliminary Work with AK

- Over 6 days, killed ~28,000 adults and ~5,000 nymphs at trees with high dose of pheromone (Morrison et al. 2016)
- High retention capacity of AK trees and low spillover into rest of orchard (Morrison et al. 2016)

•On 10 farms in 2015 & 2016

- •On 10 farms in 2015 & 2016
- •Two treatments: **AK** vs. grower std.

Attract-and-Kill Block

Grower Standard

- •On 10 farms in 2015
- •Two treatments: **AK** vs. grower std.

- •On 10 farms in 2015
- •Two treatments: **AK** vs. grower std.
- Safeguard with spray triggered by monitoring trap

Damage Incidence per Tree

10 fruit per tree

Early, mid, and harvest16 interior trees4 perimeter trees4 baited trees

Counts of Killed BMSB on Tarps

At 4 sites across 4 states

23 AK trees 17 Control Trees

BMSB adults & nymphs

Split Season Into Three Periods

Early Before Jun 15th

Mid Jun 15th-Aug 15th

Harvest After Aug 15th

2015 Results: Low population year

Results: Fruit Damage Severity

- Attract-and-Kill
- Grower Standard

ANOVA Log-transformed *Treatment* $F_{1,398} = 408.1$ P < 0.0001*Location* $F_{2,398} = 663.8$ P < 0.0001*Period* $F_{2,398} = 4421.6$ P < 0.0001**Tukey's HSD**

Results: **Fruit Damage Severity** Attract-and-Kill

Grower Standard

ANOVA Log-transformed *Treatment* $F_{1,398} = 408.1$ P < 0.0001*Location* $F_{2,398} = 663.8$ P < 0.0001*Period* $F_{2,398} = 4421.6$ P < 0.0001**Tukey's HSD**

Results: Fruit Damage Severity Attract-and-Kill

Grower Standard

ANOVA Log-transformed *Treatment* $F_{1,398} = 408.1$ P < 0.0001*Location* $F_{2,398} = 663.8$ P < 0.0001*Period* $F_{2,398} = 4421.6$ P < 0.0001**Tukey's HSD**

Results: Fruit Damage Frequency

Attract-and-Kill

Grower Standard

GLM

Binomial Likelihood Ratio Treatment $\chi^2 = 4.429$ df = 1 P < 0.04 Location $\chi^2 = 13.5$ df = 1 P < 0.0003 Period $\chi^2 = 84.6$ df = 2P < 0.0001 **Chi-square** w/Bonferroni correction

Results: Fruit Damage Frequency Attract-and-Kill

Grower Standard

Likelihood Ratio

GLM

Binomial

Treatment

 $\chi^2 = 4.429$

df = 1

P < 0.04

Location

 $\chi^2 = 13.5$

P < 0.0003

df = 1

Period

df = 2

 $\chi^2 = 84.6$

P < 0.0001

Chi-square

w/Bonferroni correction

Results: Fruit Damage Frequency Attract-and-Kill Grower Standard GLM Binomial Likelihood Ratio

Treatment

 $\chi^2 = 4.429$

df = 1

P < 0.04

Location

 $\chi^2 = 13.5$

P < 0.0003

df = 1

Period

df = 2

 $\chi^2 = 84.6$

P < 0.0001

Chi-square

w/Bonferroni correction

Adults

Nymphs

ANOVA **Adults** Log-transformed Treatment $F_{1,45} = 0.330$ P < 0.566 Period $F_{2,523} = 124.1$ P < 0.0001Interaction $F_{2,523} = 37.0$ P < 0.0001Tukey's HSD

ANOVA Nymphs Log-transformed Treatment $F_{1,45} = 0.01$ P = 0.999Period $F_{2.523} = 9.38$ P < 0.0001Interaction $F_{2,523} = 3.0$ P < 0.05 **Tukey's HSD**

Results: BMSB on Tarps Adults

Nymphs

ANOVA **Adults** Log-transformed Treatment $F_{1,45} = 0.330$ P < 0.566 Period $F_{2,523} = 124.1$ P < 0.0001Interaction $F_{2,523} = 37.0$ P < 0.0001Tukey's HSD

ANOVA Nymphs Log-transformed Treatment $F_{1,45} = 0.01$ P = 0.999Period $F_{2,523} = 9.38$ P < 0.0001Interaction $F_{2,523} = 3.0$ P < 0.05 **Tukey's HSD**

AdultsNymphs

ANOVA **Adults** Log-transformed Treatment $F_{1,45} = 0.330$ P < 0.566 Period $F_{2,523} = 124.1$ P < 0.0001Interaction $F_{2,523} = 37.0$ P < 0.0001Tukey's HSD

ANOVA Nymphs Log-transformed Treatment $F_{1,45} = 0.01$ P = 0.999Period $F_{2,523} = 9.38$ P < 0.0001 Interaction $F_{2,523} = 3.0$ P < 0.05 **Tukey's HSD**

2015 Threshold Summary

Chi-Square $\chi^2 = 3.62$ df = 1 P < 0.05

2015 Summary

- At harvest, half (or less) as frequent and severe of damage in AK block interior trees compared to grower standard
- Equivalent control in perimeter trees to grower std
- Killing 15 adults per week, per AK tree during the late

2016 Results: Higher population year

2016: Higher Populations

P < 0.005

2016: Higher Populations

Results: Fruit Damage Severity

- Attract-and-Kill
- Grower Standard

ANOVA Log-transformed *Treatment* $F_{1,400} = 770.0$ P < 0.0001*Location* $F_{2,400} = 14.8$ P < 0.001*Period* $F_{2,400} = 3191.8$ P < 0.0001**Tukey's HSD**

Results: **Fruit Damage Severity** Attract-and-Kill Grower Standard

ANOVA Log-transformed *Treatment* $F_{1,400} = 770.0$ P < 0.0001*Location* $F_{2,400} = 14.8$ P < 0.001*Period* $F_{2,400} = 3191.8$ P < 0.0001**Tukey's HSD**

Results: Fruit Damage Severity

- Attract-and-Kill
- Grower Standard

ANOVA Log-transformed *Treatment* $F_{1,400} = 770.0$ P < 0.0001*Location* $F_{2,400} = 14.8$ P < 0.001*Period* $F_{2,400} = 3191.8$ P < 0.0001**Tukey's HSD**

Results: Fruit Damage Frequency

- Attract-and-Kill
- Grower Standard

GLM

Binomial Likelihood Ratio *Treatment* $\chi^2 = 9.12$ df = 1 P < 0.003 *Location* $\chi^2 = 4.22$ df = 1 P < 0.04 **Chi-square w/Bonferroni correction**

Results: Fruit Damage Frequency

- Attract-and-Kill
- Grower Standard

GLM

Binomial Likelihood Ratio Treatment $\chi^2 = 9.12$ df = 1 P < 0.003 Location $\chi^2 = 4.22$ df = 1P < 0.04 Period $\chi^2 = 119.5$ df = 2P < 0.0001 **Chi-square** w/Bonferroni correction

Results: Fruit Damage Frequency Attract-and-Kill

Grower Standard

GLM

Binomial Likelihood Ratio Treatment $\chi^2 = 9.12$ df = 1P < 0.003 Location $\chi^2 = 4.22$ df = 1P < 0.04 Period $\chi^2 = 119.5$ df = 2P < 0.0001 **Chi-square** w/Bonferroni correction

Adults

Nymphs

ANOVA **Adults** Log-transformed Treatment $F_{1,40} = 31.3$ P < 0.0001 Period $F_{2,40} = 141.7$ P < 0.0001Interaction $F_{2,40} = 23.4$ P < 0.0001Tukey's HSD

ANOVA Nymphs Log-transformed Treatment $F_{1,40} = 68.1$ P < 0.0001 Period $F_{2,40} = 182.7$ P < 0.0001Interaction $F_{2,40} = 36.2$ P < 0.0001 **Tukey's HSD**

AdultsNymphs

ANOVA **Adults** Log-transformed Treatment $F_{1,40} = 31.3$ P < 0.0001Period $F_{2,40} = 141.7$ P < 0.0001 Interaction $F_{2,40} = 23.4$ P < 0.0001Tukey's HSD

ANOVA Nymphs Log-transformed Treatment $F_{1,40} = 68.1$ P < 0.0001 Period $F_{2,40} = 182.7$ P < 0.0001Interaction $F_{2,40} = 36.2$ P < 0.0001Tukey's HSD

AdultsNymphs

ANOVA Adults Log-transformed Treatment $F_{1,40} = 31.3$ P < 0.0001Period $F_{2,40} = 141.7$ P < 0.0001Interaction $F_{2,40} = 23.4$ P < 0.0001Tukey's HSD

ANOVA Nymphs Log-transformed Treatment $F_{1,40} = 68.1$ P < 0.0001 Period $F_{2,40} = 182.7$ P < 0.0001 Interaction $F_{2,40} = 36.2$ P < 0.0001Tukey's HSD

2016 Threshold Summary

Chi-Square $\chi^2 = 0.027$ df = 1 P = 0.869

2016 Summary

- At harvest, statistically equivalent frequency and severity of damage in AK block interior trees compared to grower standard
- Equivalent control in perimeter trees to grower std
- Killing >40 adults per week, per AK tree during late season

Economics Comparisons of Attract-and-Kill

A	Attract and Kill	Standard
Mean No. of BMSB Sprays	15	3
Percentage of Trees Sprayed	3-4	100
Percentage of Active Ingredient App	olied 20%	100%
Cost of BMSB lures/per A/season	\$1500	0
Cost of BMSB Sprays/per A/season	\$6-20	\$30-100

Economics Comparisons of Attract-and-Kill

	Attract and Kill	Standard
Mean No. of BMSB Sprays	15	3
Percentage of Trees Sprayed	3-4	100
Percentage of Active Ingredient	Applied 20%	100%
Cost of BMSB lures/per A/seasor	n \$1500	0
Cost of BMSB Sprays/per A/seas	on \$6-20	\$30-100

Take Home Messages

- Attract-and-kill is an **effective** pest management strategy
- But: not cost effective
- Unless lure price or deployment strategy can be significantly altered, no grower will adopt this

Thank you for your attention!

In the field one morning...