Factors that potentially mediate the ecological host range of *Trissolcus japonicus*

Paul S. Botch & Ernest S. Delfosse Department of Entomology Michigan State University

Brown Marmorated Stink Bug (BMSB) BMSB Integrated Pest Management (IPM) Working Group Meeting November 30, 2016

Trissolcus japonicus (Ashmead) (Hymenoptera: Platygastridae)

High parasitism rates in the native range (60 to 80%)

Physiological Host-Specificity Tests (PHST)

Risk = Hazard x Exposure

PHST poses the risk hazard question,

"<u>Can</u> *T. japonicus* attack non-target species?"

To determine this,

- 23 Pentatomoidea spp. were tested; and
- Development and emergence occurred on 15 species in 11 genera.
- Therefore, the hazard prediction is that *T. japonicus* <u>can</u> complete development on some native Pentatomoidea.
- But, what about the exposure analysis?

Ecological Sieves

"<u>Will</u> *T. japonicus* attack non-target species?"

Sampling in Michigan

Current Distribution in Michigan Reported in 46 Counties

BMSB Sampling

Host Plants:

June – Sept:

- Tree of Heaven
- Honeysuckle
- Ash
- Boxelder
- Eastern White Cedar
- Black Locust
- Pokeweed

Sept:

• Soybean

Pentatomidae in Woodlot Communities

- 15 species.
- Banasa dimidiata 24%
- Euschistus tristigmus luridus 24%

Pentatomoidea in Grassland Communities

- 16 species.
- Cormelaena spp.- 59%
- Euschistus variolarious 16%

Adventive T. japonicus in the Field

Trissolcus japonicus (Ashmead) (Hymenoptera, Scelionidae) emerges in North America

Elijah J. Talamas¹, Megan V. Herlihy², Christine Dieckhoff^{3,4}, Kim A. Hoelmer⁴, Matthew L. Buffington¹, Marie-Claude Bon⁵, Donald C. Weber²

 Systematic Entomology Laboratory, USDA/ARS clo NMNH, Smithsonian Institution, Washington DC, USA 2 Invasive Insect Biocontrol and Behavior Laboratory, USDA/ARS, BARC-West Belisville MD, USA
Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE, USA 4 Beneficial Insects Introduction Research Unit, USDA/ARS, Newark, DE, USA 5 European Biological Control Laboratory, USDA/ARS, Montpellier, France

Discovery of an Exotic Egg Parasitoid of the Brown Marmorated Stink Bug, *Halyomorpha halys* (Stål) in the Pacific Northwest

Author(s): Joshua M. Milnes, Nik G. Wiman, Elijah J. Talamas, Jay F. Brunner, Kim A. Hoelmer, Matthew L. Buffington and Elizabeth H. Beers Source: Proceedings of the Entomological Society of Washington, 118(3):466-470.

Published By: Entomological Society of Washington

DOI: http://dx.doi.org/10.4289/0013-8797.118.3.466

URL: http://www.bioone.org/doi/full/10.4289/0013-8797.118.3.466

MI Sentinel Egg Surveys

Parasitoids by Host Species. 2015

Host		Parasitoid	BMSB Eggs			
Common Name	Family	Species	Family	No. Put	Atta	cked
				Out	No.	%
American hornbeam or Ironwood, Carpinus caroliniana	Betulaceae	Trissolcus cosmopeplae	Platygastridae	84	8	0.10
Milkweed, Asclepias albicans	Apocynaceae	Ooencyrtus sp.	Encyrtidae	84	8	0.10
Milkweed, Asclepias albicans	Apocynaceae	Trissolcus euschisti	Platygastridae	28	3	0.11
Wild Grape, Vitis vinifera	Vitaceae	Trissolcus cosmopeplae	Platygastridae	28	6	0.21
Wild Grape, Vitis vinifera	Vitaceae	Ooencyrtus sp.	Encyrtidae	27	4	0.15
Hawthorn, Crategus rhipidophylla	Rosaceae	Ooencyrtus sp.	Encyrtidae	56	6	0.11
American basswood, <i>Tilia americana</i>	Tiliaceae	Trissolcus cosmopeplae	Platygastridae	28	1	0.04
American basswood, <i>Tilia americana</i>	Tiliaceae	Trissolcus euschisti	Platygastridae	28	2	0.07
American basswood, <i>Tilia americana</i>	Tiliaceae	Trissolcus brochymenae	Platygastridae	20	1	0.05
			Totals	383	39	0 10

Ecological Sieves

Habitat Complexity Experiments

46 x 46 x 46 cm

1.5 x 1.5 x 2 m H

Habitat Complexity Experiments

		No. egg masses parasitized					
Test N	lo. reps	BMSB	T.c. accerra	P. maculiventris	X ² statistic	p-value	
Paired-choice	21	20	15		4.29	0.0384	
	21	18		12	4.2	0.0404	

Ecological Sieves

Physiological (Potential) Host Range

Semiochemicals

Host location by *Trissolcus basalis*:

- Egg kairomones (Bin et al. 1993).
- Adult cuticular hydrocarbons (Colazza et al. 2007).
- Defensive secretions (Laumann et al. 2009).
- Chemical footprints on leaves (Colazza et al. 2009).
- Feeding and oviposition damage (Colazza et al. 2004).

Semiochemicals

- Y-tube Olfactometer.
- Odor Sources.
 - ✤ Eggs.
 - ✤ Adult BMSB.
 - ✤ Chemical footprints.
 - ✤ Feeding damage.
- Under Continued Evaluation.

Ecological Sieves

Physiological (Potential) Host Range

- One, 24-h-old mated, naïve female *T. japonicus* placed in middle of arena.
- Scored behaviors:
 - Encounter with eggs;
 - Inspection of eggs by circling and antennal drumming;
 - Egg rejection (abandoning); and
 - Egg acceptance (oviposition).
- After 24-h, Petri dishes moved to an environmental chamber at 25°C; 60-80% RH; 16:8 L:D.
- Wasp removed from the arena after 24-h.
- Egg masses held separately until wasp or nymph emergence.

150 x 15 mm Petri dish arenas.

No. replicates in which eggs were accepted (blue) or rejected (orange) (*n* = 30)

Development on Non-Target Hosts

Does specificity differ?

- Do compounds on eggs train wasps for preference?
- Genetic inclination?
 - Tumlinson *et al.* 1993. How parasitic wasps find their hosts. *Scientific American*. March: 100-106.

Does fecundity differ?

· Effects of phenotypic variation.

- Arakawa *et al.* 2004. Effects of host species on body size, fecundity, and longevity of *Trissolcus mitsukurii* (Hymentoptera: Scelionidae), a solitary egg parasitoid of stink bugs. *Appl. Entomol. Zool.* 39:177-181.
- Abram *et al.* 2015. Size-induced phenotypic reaction norms in a parasitoid wasp: an examination of life-history and behavioural traits. *Biological Journal of the Linnean Society. (In Press).*

12

🗾 Ovipositions 🛛 📕 Rejections

BMSB Reared

T.c. accerra Reared

P. maculiventris Reared

Conclusions and Future Work

- 1. Risk = Hazard x Exposure, = "Can-Do" x "Will Do."
 - Hazard is the innate capacity of a biological control agent to attack a nontarget species and is determined in PHST; and
 - Exposure is determined by ecological sieves that may mediate the hazard.
 - A high hazard and a low exposure can mean that a potential biological control agent is "safe" to release.
- The hazard analysis following PHST shows that *T. japonicus* <u>can</u> attack at least 11 genera of native Pentatomoidea.
- 3. The exposure analysis shows that there are some ecological sieves (habitat partitioning and host egg characteristics) that can mediate the potential hazard.
- 4. In the absence of mediating ecological sieves, we feel that the potential host range of *T. japonicus* is too broad, and it should not be approved for release.
- 5. However, since adventive populations of *T. japonicus* have been found in eastern and western U.S., this is a moot point, and efforts to identify ecological sieves and evaluate damage to native Pentatomoidea should be the focus of future research.

Acknowledgements

USDA-APHIS Farm Bill Grant: No. 11-13-8130-024 CA

This material was made possible, in part, by Cooperative Agreement 8130-0024-CA 2016 from the United States Department of Agriculture's Animal and Plant Health Inspection Service (APHIS). It may not necessarily express APHIS' views.

Delfosse Classical Biological Control Lab

MSU AgBioResearch MSU Extension MSU Department of Entomology